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I. SUMMARY

Our studies of collective wave behavior due to nonlinear effects
arising from the strong electron-piezoelectric interaction in amplifying
CdS have continued during this quarter, A paper describing the fundamental
mechanisms giving rise tothe ac collective effects is affixed to this
report as an appendix,

Experimental work on magnetostatic and magnetoelastic inter-
actions and a theoretical analysis of the intermediate mode of propagation

in YIG rods is also given in this report,

II. MAGNETQACOQUSTIC AND SPIN WAVE INTERACTIONS

A, Introduction

Two modes of spin wave propagation have been observed previously
in yttrium iron garnet (YIG) rods: the magnetoelastic mode1 and the
magnetostatic mode,2 However, a new mode of spin wave propagation was
observed and reported in the second quarterly progress report written for
this contract, This new mode of propagation is of interest not only because
it will furnish us with a more complete understanding of magnetic inter-
actions in YIG and similar materials but also from the practical point of
view, The linear dispersive characteristics of the new mode are ideal for
field or frequency swept delay line devices, During this quarter we have
extended our experimental work and refined the model for the interaction

by means of which the delay time is calculated,
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B, Discussion

1, Experiment

Since it is important to determine where the intermediate echoes
are generated, experimental data obtained from rods having polished end faces
were compared with that obtained from those with end faces which are un-
satisfactory for magnetoelastic studies, It was found that there was no
correlation between the perfection of the end surfaces and the appearance
of the intermediate echoes, However, if magnetostatic echoes were observed,
intermediate echoes were also seen, From these preliminary experiments and
the additional fact that both magnetostatic and intermediate echoes are
present in a transversely magnetized rod, although magnetoelastic echoes
are not seen, we are led to conclude that the magnetostatic and intermediate
echoes are generated at similar positions within the rod,

An interesting feature is found in comparing the applied magnetic
fields at which the magnetoelastic and the magnetostatic echoes are first
seen at a particular temperature, These initial fields (Hi) were compared
at various temperatures for three different rods, The results are shown
in Table 1, It is seen that the difference AH between the field at which
the magnetoelastic echoes are first observed (H;E) and the field at which
magnetostatic echoes are observed (HMS) is independent of rod length and

diameter and is equal to 2m times the saturation magnetization MS‘

old
AH = HME - HMS = QWMS

The most startling piece of information obtained from the data is that the
field at which the turning point occurs (¥ = H;) is found within rods A

and B, If we assume, as is generally done, that magnetostatic waves traverse
the whole length of the rod, then magnetostatic echoes should not be observed
under these conditions because spin waves cannot propagate in regions where
the internal field is greater than the internal field at the turning point
(Hi > H;). It is important to note that magnetostatic echoes are observed

in rods A and B even though it appears that they should not be,
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In addition,magnetoelastic echoes should not be observed for

applied fields (HO) greater than
S .

Bqt it is seen in rods A and B that H0 is significantly larger than

HﬁE' The clue to this strange behavior is contained in rod C, which does
not exhibit these effects, and also in the temperature dependence of

H;E in rods A and B, Rods A and C have essentially the same length and
diameter and were obtained from the same source (Microwave Chemicals
Laboratory) but most likely were grown on different days with slightly
different batches of material, Thus we shall assume that the difference
in behavior is due to the presence of impurities whose influence manifests
itself like an additional demagnetizing field, This assumption is sup-
ported by the fact that H&E rises with increasing temperature in samples
A and B, This fact indicates that the magnitude of H&E is not a
function of the saturation magnetization which decreases with increasing
temperature, but is most probably related to some exchange relaxation

rate between impurity ions and the iron sublattice, This problem will be
studied further, not only to find the source of the effect but also to
discover how the anomalous resonance field influences spin wave interactions
in YIG rods,

During the course of this work the conditions for maximum ampli-
tude of the intermediate echo were studied, It was found that maximum
intensity is obtained when the direction of the r,f, field hRF is
perpendicular to the rod axis. Deviations of more than 1° reduce the
amplitude considerably, It should be noted that this condition does not
apply to the direction of the external field since maximum echo intensity
is not obtained when H0 is parallel to the rod axis, The deviations in
this case can be quite large (~ 5 - 10°) and no consistent behavior was
found, Temperature also influences the echo intensity, Although this
work is in its initial stages, a maximum in the number and intensity of the

intermediate echoes with decreasing temperature was found to occur at
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about 170°%K in rod B, In addition, the intensity of the echoes at 77K

was less than that observed at room temperature,

2, Theory
In discussing the mode of propagation of the intermediate echoes
we must distinguish clearly between the generating point and the turning
point, The fact that this difference exists can be illustrated clearly by
discussing briefly the magnetoelastic and magnetostatic modes, The dis-

persion relation used to describe magnetoelastic waves,1
2
w = . + D
w = yH; + yDk |

where w is the operating frequency, D is the exchange constant and Hi
is the internal field in the rod, is shown at the top of Fig. 1, The
linear dispersion is due to elastic waves (w = ck) and the parabola is
the spin wave exchange branch, Point B at the intersection of the curves
is called the crossover region where spin waves and elastic waves interact,
We are interested in the manner in which electromagnetic radiation at
microwave frequencies is converted into spin waves, The difficulty in
coupling to spin waves arises from the fact that the spin wave length is
small compared to the r,f, wavelength, However, at the turning point A,

which we shall for the time being define as the position in the rod where
W

Y
A in the direction of the center of the rod (Fig, 1), This is due to the

fact that k2 = (2 - Hi)/D and since Hi > % the wave number is imaginary
(k2 < 0) and spin waves are damped, In adaztion, the wavelength of spin
waves decreases rapidly due to the decrease in Hi as we move from A to

B toward the end of the rod as shown in the bottom of Fig, 1, Thus it can
be seen that a net spin moment has been provided at the turning point to
which the r,.f, field can couple, Spin waves which travel toward the turn-

ing point are generated in this manner,

= H, several important effects occur, OSpin waves cannot propagate beyond
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(Top) Dispersion relation for phonons and exchange-dominated spin
waves. The degeneracy is lifted at B, the crossover point where
the interaction between phonons and spin waves is strong. Point

A at small values of k 1is called the turning point at which spin
waves are reflected and beyond which spin wave propagation does
not occur. A net spin moment is also provided at point A due to a
wavelength decrease toward point B as shown at the bottom of the
figure.

(Center) Internal field configuration in an axially magnetized rod.
The turning point A and the crossover point B are shown. The direc-
tion of propagation of the magnetostatic mode is shown by the arrows.
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In the case of magnetostatic modes the dispersion relation is3

2
E)_l.

= Hi + 2mM R k2 e e . 2

®
Y

As stated earlier it is assumed that the turning point is no longer in

the rod for magnetostatic mode propagation to occur, Solving 2 for k2

we obtain

It is seen from Eq, 3 and the dc internal field distribution within the
axially-magnetized rod (center of Fig, 2) that k2 increases and there-
fore the spin wavelength decreases from the end of the rod toward the
center as shown at the bottom of Fig, 2, 1In addition,the turning point
(w/y = H,) is found at an infinitely large wavenumber (k - =), However,
coupling of the microwave r,f, field to magnetostatic spin waves cannot
occur at the turning point since no net moment is available there, This
is one important difference between the turning point for magnetostatic
waves and that for magnetoelastic waves, It is important to note that
even in the case of the magnetoelastic mode the turning point does not
provide a coupling region, The source of the net moment is the rapid
change of wavelength due to the non-uniformity in the internal dc field
as pointed out by Schl'émann.4 Thus magnetostatic waves can be generated
and detected only at the ends of the rod where the spin moment exists,
In the second quarterly report we proposed a possible explanation
for the intermediate echo which consisted of converting slow-moving
magnetostatic spin waves into elastic waves at the crossover point, In
this model the change in delay time arose from the varying amounts of
time spent as a slow-moving magnetostatic wave, We have calculated the
value of k in the magnetostatic region degenerate with the crossover

(wMS = wCR) and find
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FIG. 2 (Top) Dispersion relation for magnetostatic spin waves showing the
asymptotic approach to the turning point at k - = .,

(Center) Internal field distribution in an axially magnetized rod.
The direction of propagation of magnetostatic waves is shown by

the arrows. The turning point H; = w/Y is not contained in the
rod.

(Bottom) The relative wavelength of magnetostatic waves in the rod.
The large wavelength at the ends of the rod provides the net moment
for coupling to the rf field.
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where ke is the wavenumber at the crossover point in the exchange region

given by

Ci/cz_( )4YHi'

_ 5 -1
ke = ~ 107 (em )

=lo

=To

where ¢ is the velocity of shear elastic waves, Using Eq, 2 the group

velocity of magnetostatic waves fof the condition Wns T ©cRr is found
to be

Y.\2 8
ﬁl) 4% = - 2.34(10 ) cm/sec,

Thus we are able to conclude that magnetostatic waves are traveling much

too fast in the region degenerate with the crossover to account for the

intermediate echo delay time by the above mechanism, However, we have al-

luded to a magnetostatic turning point as a barrier at which the waves are

partially reflected and damped, This can be seen more clearly by writing

the equation of motion of magnetostatic waves in the form

d
dz

dm

+ k2(z)m =0 . .. 5
dz

where k is given by Eq, 3 and =z is measured down the axis from the

center of the rod, The rate of change of slope (curvature) of Eq, 5 is

negative for positive m and k2 > 0, but eventually the m coordinate
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(Top) Dispersion relation of magnetostatic spin waves showing the
cutoff wavenumber arising from losses,

(Center) Internal field distribution in an axially magnetized rod.
The turning point without losses (uw/Y) and with losses (w/Y - 4H, )
are shown in addition to the direction of propagation intermediate
mode.

(Bottom) Change of wavelength of intermediate mode as we proceed
from the end of the rod toward the cutoff wavenumber.
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axis will be crossed and m will change sign. This changes the sign of the
curvature and the process will repeat, leading to an oscillating function,
If, however, we choose the same initial conditions, except that k2 <0 and
assume a finite value of m at ,z, = o, the function will not cross the m
coordinate axis, This is due to the fact that the sign of m and the curva-
ture are the same, As 2z increases, m approaches zero monotonically (damped
function), Thus the character of the wave changes at w = YHi, In contrast
to the exchange branch where the turning point occurs at k = O, the magneto-
static turning point occurs at k = », This is unsatisfactory for several
reasons, not the least of which is the fact that for large values of k

¢ > 104 em 1) the dispersion relation is dominated by the exchange energy.
We have, however, not included losses6 in the spin wave dispersion relation,
This can be done by replacing w with w + iY(AHk/2) and k with k + iK

where AHk is the spin wave linewidth,

2

Y.
k) = YH + 20Ny (7%) —~—-l*—-§
° (k + iK)

YAH
2

w+ i

Equating real and imaginary parts and solving the equation containing the

imaginary part for K we obtain

[ YAH, }
K=-k
20w - YH) + YoH

substituting K into the equation containing the real part we obtain the

new dispersion relation

2

(YAHk)2 (YAHk)2 vy
(v - YH) |1 - 5|+ S
(260 - YH) + YaB 1* | [2(w - YH) + vaR]
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From Eq, 6 it is seen that the introduction of losses has moved the turn-

ing point from k = « to a cutoff wavenumber kco given by

Yi2
21Ny R, 1

_ | \RJ _ 3 - _
kco = YAHk =1.8(107) c¢m = (for AHk = 0,1 Oe)

Magnetostatic wave propagation does not occur for k > kco' However, as
we pointed out above the magnetostatic waves are partially reflected at
kco in the same way gs they are reflected from the turning point in the
magnetoelastic mode,” The group velocity Vg = dw/dk of the inter-
mediate echoes is calcylated from Eq, 5 and found to be

4Co-vE)® + avi) 2B + 20evE) (v ® - v

Vo=-
9 Ak -
/QTTMY(Y—RI’) {2(w—yﬂi)3/2 + 20vH) 2 (VaB) + (0-vE) 1’/2(YAHk)2}

The delay time T 1is obtained from the equation

The complexity of the integral has made it difficult to obtain a solution
in closed form., However, an order of magnitude estimate has been made by
means of a hand calculator, The results of these calculations indicate

that our model for the intermediate echo yields satisfactory results,

C. Program for Next Interval

Our analysis of the intermediate echo and the field dependence of

the delay time will be completed during the next quarter, A computer
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program is being written to calculate v directly, Experimental data
will be presented which describes the changes in delay time with temper-
ature and rod size,

In addition,work will continue on the anomalous field effect
mentioned in this report, A series of relaxation time measurements will
be initiated to gain information about the coupling of impurity ions
to the iron sublattice and to determine whether this coupling influences

spin wave propagation,
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ROD A 0,408" x 0,120" ( (100) orientation)
Magnetostatic
Temg. w/y Ho
80K 3072,6 3373 ~—==f—--—1~
4,7% 3072.6 3386 —~—p~——+—-——
AH = 1145 gauss
| AH = 1099 gauss
1 ]
Magnetoelastic l \
BOOKO 3050.82 | 4518.06 —|-—— - :
4,7K 3051,18 4485.,2 -—-F-—=———=-- J
ROD B 0.210" x 0,060" ( (100) orientation)
Magnetostatic
Room Temp, 3058.6 3198 - - - —-4
o AH = 860 gauss
5.4 K 3072.98 3425 - - —[———,
1.8% 3072.6 3430 - -f-——th----4
13 i
Magnetoelastic :: !
Room Temp, 3058, 68 4050 — — —-—} ;
AH = 1154 gauss
5.4% 3072.98 | 4579.7 = —|- — — —IpH = 1136 gauss
1.8% 3076,2 45661 —~F - == —m —m '
ROD C 0.425" x 0,122" ( (110) orientation)
Magnetostatic
Temp.
80%K 3059,75 | 3069.15 =|————n
o AH = 1202 gauss
1.75 K 3016.5 3026.81 —F — — - _: - =
1 !
[ﬁMagnetoelastic L, !
80°K 3059.75 | 4271.32 ~t— —-—-— 2 |
o AH = 1211,8 gauss
1.757K 2989 .7 4238 .65 -+ — — — — — —
Table I

February 8, 1966

Magnetic fields at which magnetoelastic and magnetostatic echoes are
first observed at various temperatures as the applied field is lowered
from values well above the resonance condition,
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Collective Acoustoelectric Waves in Piezoelectric Materials

E. W. Prohofsky
Sperry Rand Research Center, Sudbury, Massachusetts

ABSTRACT

The electron-piezoelectric sound wave interaction gives
rise to three distinguishable phenomena: gain, acoustoelec-
tric effects, and nonlinear mixing. The acoustoelectric
effects, through coupling to the gain, cause interaction be-
tween sound waves which can give rise to collective wave
propagation. The propagation can be described as an acousto-
electric wave.

If nonlinear mixing is stronger than the net coherent
gain for some group of sound waves, the collective propaga-
tion will be a second sound acoustoelectric wave. The non-
linear mixing rate is estimated and found to be rapid enough

for second sound waves under certain conditions.

I. INTRODUCTION
The purpose of this paper is to illustrate the fundamental mecha-
nisms which can give rise to ac collective effects in amplifying CdS. The
word collective is used to indicate that the effects described are not due
to any one sound wave but rather that the effects have to do with the co-

operative behavior of many sound waves. Of course, for this cooperative

The work reported here was partially supported by the National Aeronautics
and Space Administration under Contract No. NASN-1184.




behavior to come about, some type of interaction must exist between the dif-
ferent sound waves. In CdS, the very strong and extremely nonlinear electron-
piezoelectric sound wave interaction provides the means to achieve collective
behavior.

In addition to the well-known amplification, the electron-
piezoelectric interaction produces two other important phenomena: the acousto-
electric effects and nonlinear mixing. The acoustoelectric effects provide
the interaction that can hold a collective wave together. The nonlinear mix-
ing can greatly alter the form that the collective wave may take. For very
weak nonlinear mixing, the collective wave will be a convective type wave and
will travel at close to the velocity of sound. Convective waves are taken to
be waves which can grow im amplitude down the length of a crystal. In the
limit of large nonlinear mixing, the wave will be a compression wave or second
sound wave and will travel at 1//3 times the velocity of sound. It appears

that both waves have been observed in CdS.

In Sec. II, the electron-piezoelectric wave is shown to give rise
to currents which are responsible for: acoustoelectric effects, gain, and
nonlinear mixing. In Sec. III, it is shown that under certain conditions

acoustoelectric effects can give rise to collective wave propagation.

The effect of the nonlinear mixing is discussed in Sec. IV., and
the concept of a sonic fluid is described. The sonic fluid is a valid de-

scription of the hypersonic system in the limit of rapid mixing collisions.

The collective wave (or second sound wave), which is the proper solu-

tion in the limit of rapid mixing, is described in Sec. V.

In Sec. VI, a rough order of magnitude is calculated for the life-

time of sound waves making up the sonic fluid. On the basis of this lifetime,
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one can determine which sound wave frequencies make up the sonic fluid and

hence are capable of supporting second sound waves.

II. ELECTRON-PIEZOELECTRIC WAVE INTERACTION
The passage of a sound wave through the piezoelectric crystal
causes a periodic variation of the electric potential. This variation in
potential bunches free carriers in the region of lowest potential. For a

crystal which has many sound waves present with frequencies w,, the electron

zl
density distribution will be modulated by each wave £, and one could write
the time dependence of the electron density as

iw,t

n o= ng+ z nge + C.C. (2.1)

where n, is the ambient density and n, is the size of the fluctuation asso-

ciated with each wave 4.

Similarly, the carrier drift velocity is modulated by the alter-

nating piezoelectric fields and the drift velocity can be written
Vg = VY, + T Ve + C.cC. (2,2)
4

where v, is the dc current and v, is the size of the fluctuation in velocity

4
due to wave 4.
The current is proportional to the product of n and vy

iw,t 1w,t
i = v v 4 ev. ¥ n,e 4
J o= enyv. + en0§ 48 + ev 4 coe

iwzt -iwtt
+[§: evyn, e e “en (2.3)

i(unium)t
+-[§ en v e cee
m
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=jo+jmﬂ+j%m+j%%). (2.4)

®
The power generated at a frequency w, is P(wz) = iRe[j(uL)E (UL) + c.c.]
where E(ML) is the piezoelectric field of sound wave £, Whether the wave
is being amplified or damped depends on the relative phase between j and E.

The first order currents j(wt) are responsible for the familiar

1

ultrasonic amplification of wave 4 when v > v_. The third term in Eq. (2.4)

is the generalized acoustoelectric current. One can see that

j't) = % vyny (2.5)

is additive over all sound waves £. One can also see that since j'(O) does

not have time dependence W, it does not, to first order, directly alter P(uz).

The currents j'(wz) are the nonlinear mixing currents. For
example,if w = Wy in Eq. (2.3), then power can be fed to a wave w, where
w, = 2un,giving rise to second harmonic generation. In general, if there is a
large number of waves of many frequencies Wt then there will be current at all
sum and difference combinations. This can cause mixing of energy to occur among

the distribution of sound waves.

To summarize this section, we note that there are, in the presence
of piezoelectric sound waves: (1) first order currentswhich can cause gain or
loss, (2) an acoustoelectric current which is proportional to the total sonic
energy density in a region, and (3) mixing currents at the sum and difference

frequencies for all the waves present.




111. THE ACOUSTOELECTRIC COLLECTIVE WAVE

In this section, we will assume that the effect of the mixing cur-
rents is small and we will concentrate on the effect of j'(0), the acousto-
electric current. When the electrons are amplifying sound waves, the reaction
hack on them tends to decrease the current. Therefore, as pointed out by
Hutson.2 the acoustoelactric current then flows in the opposite direction to
that of the sound wave. Since the local acoustoelectric current is propor-
tional to the local acoustic energy density, a variation of acoustic density
from region to region of the crystal will cause this current to also vary from
region to region.

The situation is illustrated in Fig. 1 where a fluctuation or
amplitude modulation is set up over distances large compared to the wave-
lengths of the individual ultrasonic waves. To maintain current continuity,
additional electric-field-driven current must flow in the forward direction
to cancel out the variations in backward-flowing acoustoelectric current, Cur-
rent uniformity is achieved by bunching charge in the regions of maximum
acoustic energy gradients, The electrostatic fields of the bunched charge add

to the local field so as to maintain currgpt continuity,

Using Poissonts equation and the continuity equation, it has been

shown by Carleton3 that the local electric field is:

1 o
E(X) = EO + g 1 - i(U[U ) (3.1)

where E0 is the external gpplied field, o the conductivity, Joae the uniform
acoustoelectric current, gand jae(x) the local current which is caused by logal
fluctuations in sonic jngtensity. This electric field fluctuation alters the

i
local gain of a sound wave hecause the gain is a function of uE. The



FIG.

1

(¢)

(a) The large-amplitude sine wave (solid line) with wavelength
w represents the electric potential associated with a coherent
sound wave in piezoelectric material. The accumulation of elec-
trons in regions of positive potential reduces the potential.
The sound wave, with accumulated charge, is represented by the
broken-line sine wave. The largest amount of charge accumula-
tion which can occur would completely counterbalance the piezo-
electric potential, in which case no further electron attrac-
tion occurs.

(b) The broken line represents the envelope of a fluctuation in
amplitude and density of pizeoelectric waves. There is no coher-
ent electric potential associated with this envelope. The local
electric potentials are associated with the short-wavelength sound
w<<W waves and are represented by the jagged lines contained
within the density fluctuation. The individual electrons inter-
act with the potentials of individual sound waves giving rise to
a varying acoustoelectric effect. This causes a bunching charge
which is necessary to maintain current continuity.

(c) The charge accumulation caused by the sonic wave diagrammed

in (b) is the doubly broken line. The arrows represent the fields
due to the charge bunching. The field is largest in the region of
larger sonic energy density. This in turn causes the gain to be
greatest in those regions which amplify the initial distribution of
sonic energy.



simplest case to discuss is that for which slight increases in the external
accelerating field increase the gain linearly (i.e., qu;w vs). The gain is
then greatest in a region where the fluctuation in the acoustoelectric field

adds to the dc field.

Consider the result of this acoustoelectric effect on an individual
sound wave entering a region of somewhat higher acoustic energy density. The
sound wave experiences an increase in gain over that which would have occurred
had the density fluctuation not been present. The presence of a positive
increment in acoustic density causes a positive increment in gain. Since more
sonic energy is generated where larger energy densities already exist, the
overall effect is to give rise to an apparent attractive force between acoustic
elements. This acoustoelectric interaction is established in times of the
order of an electron collision time and can therefore be taken to be an in-
stantaneous and local interaction for frequencies and wavelengths comparable

to ultrasonic sound waves.

The Boltzmann equation for the energy density S, for a given sonic

k
wave with wavevector k can be written as
jL S +C VS = o S
ot “k k k = "k’k (3.2)

where Ck is the velocity and o, is the gain of wave k. We shall assume that

k
. . . . . 1

k is restricted to such values that the classical analysis of White, or

Spector,4 are appropriate (i.e., k A << 1, where A is the electron mean free

path). The interaction of these sound waves with electrons can then be

treated as a very smooth interaction over many electron free paths.

We now assume the existence of some zero order distribution of

acoustic energy density which is stationary in time but may show convective
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growth; that is, under acoustic gain, the anode end of the crystal will have
a larger acoustic energy density than the cathode. In this approximation, we

may write
S (x,t) = Sﬁ(x) + Sl:(x,t) (3.3)

The zero order solution for Eq. (3.2) is a difficult nonlinear
problem. For a discussion, see Carleton et al.3 We will assume that all the
fluctuations in time are small, i.e., Si << Sz and that Eq. (3.2) may be

linearized in Sé to give

0 7 ‘ ¢ 0 0~/
St Sk + Ck VSk = o Sk + akSk (3.4)

where aé is the alteration in gain which may accompany any variation in Sé.

The variation in o as a function of electron drift velocity for
low frequency sound waves has been derived by White and Spector.l'4 To
simplify our problem, we will assume that Eo is such that a linear dependence

of o on vy is a good approximation for small enough Vi where vy is the varia-

tion in the drift velocity v This is the case for v .~ C We will also

d’ d k*

assume, within the classical context of this discussion, that all nonlinearities

bétween V4 and Eo' the externally applied accelerating field, are due to a
build-up of acoustoelectric field E?®, i.e., u is constant. In this approxi-

mation, one can Write

a]l{ - o E (3.5)



The acoustoelectric current can be written in terms of o and S and is

. g
Jae = T enc E‘aksk
(3.6)
g 0.0 10 0c’
= - o E (akSk + dksk + aksk cee )
where n is the dc electron density and ¢ is the velocity of sound.
The resulting local field variation is
I 1 0/ 'z /.0
Eae = o3 E (oszk + akEae Sk) (3.7)
0 7
T, o S
J— S (3.8)
ae c_za//o
en k % Sk
Equation (3.4) then becomes
('a—+C‘V-cvo)Sl._a”S°El
ot * “q Q" "q 7~ "q "q “ae
(3.9)
//So .
= 44 z o S
enc -p o S0 k
Kk k k

One can derive an equation for a collective coordinate % aESé by multiplying

Eq. (3.9) by a; and summing. We assume plane wave solutions for the density

fluctuation, i.e.,

st = o, J4Qx-at) px (3.10)

q =



The dispersion relation for the collective coordinate then becomes.

ao a’ S0
(enc - % a’]’(s“:) = ¥ k k k - - (3.11)
k k i (Ck’Q -Q) + (7 - ak)

where B' = Ck'B and k axdq, both dummy indices, have been replaced by k. Upon

separating real and imaginary parts

0 .
o (Ck 0 -2Q)

T o S° = 0 (3.12)
k kW{Q-ms+@'-4f
and
o ,. ¢ 0
o (B - o)
-enc + & aiSﬁ 1+ k 3 Ik 53| = 0 (3.13)
k (Ck'Q -Q) + (g - ak)

In the limit of very large gain by individual sound waves, i.e.,

) 0 .
l B - ak) >> (Ck Q -a) , (3.14)

equation (3.12) gives the linear dispersion relation

0 # 0
( o o Sk Ck cosek)
—-

(g’ - aﬁ)

0 ~ 0
o % Sk
' - ozﬁ)2

where ek is the direction sound wave k makes with the collective wavevector Q.

=~

Q (3.15)

The collective wave velocity is some weighted average of the single sound




wave velocities, Ck' In the same limit, Eq. (3.13) gives

(i}
o
# O k ¥ <0
E akSk o = enc - E akSk (3.16)
%
The term "enc® is approximately the dc current, whereas %’d;S§ is the local

current, which is the same size as the acoustoelectric current. We there-

fore assume

¥ 0
enc > ¥ « (3.17)
E Sy

which implies

{

B° > aﬁ (3.18)

Equation (3.15) then becomes

0 R Q ~ —CQ (3.19)

i 0 &0
I E o o Sk
B = o (3.20)
enc - L o Sk
% on
In CdS the ratio of o where Xk is the wavelength X is of the
k

order of one per cent for ultrasonic frequencies. The approximation (3.14)

would then be valid for collective wave frequencies

a < 10 W

where Wy is the frequency of the participating ultrasonic waves,

(3.21)
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A rough approximation to the dispersion relation when condition
(3.14) does not hold can be found by an approximation of the product

u
o

0 0
k % % -

The dc gain aﬁ is positive only within a cone such that the
component of electron drift velocity along a sound wavevector is greater

than Ck' Similarly, one expects the de¢ sonic energy density S; to be large

where az > 0 and very small for az < 0. We then expect the major contri-
bution to the product aﬁ Sz a; to occur within the gain cone and only a

small contribution from outside. We approximate this by setting

A for ek <8

x

(3.22)

= o
]

e 4

= o

0 for ek > 38

Changing the sum in Eq. (2.12) to an integral and concentrating only on the

angular integration, one gets

1
(C Qu - Q) du
2y - —5 = 0 (3.23)
8 (CQu -Q) + u® (CB - a®)
0
e

where u = cos®,, u® = cosd, and w°° = (a;), where ( ) signifies some average

value. Equation (3.23) becomes

(€0 - )2 + (€ - %)

log
€0 u® - @ + u® (cB - °9°

2 - c8 Qa - p @°° - cp)

= ——— tan} (3.24)
CQ Q@ - ) + ¥ [CF + °°-0p)]
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00

In the limit CB - o << CQ, the right-hand side of Eq. (3.24) is of the order

The left-hand side then gives

4] (¢] 00
a o~ utoco .l QBEQ"’ s - °%)

(3.25)

~ CQ

which is roughly the same averaged velocity to first order as Eq. (3.19).
A similar approximation to the integral can be made in Eq. (3.13) and, with
the substitution of Eq. (3.25), it becomes

Q- B =%
tan

0 2
Q@ - 1—+2“— c) + w® [C%Q° + (CB -a°% ]

(3.26)

2 C.Q ¥ 0
= T oS - enc
A ( o’ ) {k ‘ }
1 2

+
o’+ (c8 - %)

or

x

00 0 ' 2
a1l [_w cQ 0
e = c - 5 ( u;a) A {-}nc - E dksk} (3 .27)
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IV, THE EFFECT OF NONLINEAR MIXING
In the previous section, we have ignored the existence of the non-
linear mixing currents. This approximation becomes particularly poor as the
frequencies of the sound waves increase. To help in understanding the role
of these nonlinear currents, it is best to think of the sound wave spectrum

as being made of three regions as shown in Fig. 2.

In the lowest frequency range, with wavevector k such that

0< k< kl' are the sonic and ultrasonic frequencies which have large co-
herent gain under amplifying conditions. Although these low frequency sound
waves are coupled to other sound waves so as to generate harmonics, etc.,
their amplitude has net growth with time. At the other extreme, the highest
frequency range.,consisting of "thermal phonons® with k > k2. is only slightly
affected by the crystal being in gain condition. The reason for this is that
sound waves at these high frequencies are dominated by nonlinear interactions
(piezoelectric and other) which couple these modes to the crystal thermal

reservoir. Pumping energy into these sound modes merely causes a slight in-

crease in the ambient temperature of the crystal.

The intermediate frequencies k1 < k< k2. which for convenience
we will call the hypersonic region, are those in which nonlinear mixing and
coherent gain compete and one cannot ignore the role of mixing terms. The

formula for nonlinear mixing between piezoelectric waves has been derived by

5,6

Several authors. The mixing is found to be much stronger6 than the non-

linearities associated with crystal anharmonicities. In the hypersonic fre-
quency range, the dominant nonlinear term is that of the nonlinear currents.
This couples piezoelectric hypersonic waves among themselves more strongly
than to other modes of the system. The coupling to piezoelectric sound waves

of thermal frequencies is not strong because the bunching of charge required

for these shori wavelenyih currenis opposed by diffusion effects

is
- 13 -




FIG. 2 A convenient breakdown of the total piezoelectric sound wave spectrum
into ultrasonic, hypersonic, and thermal regions. The ultrasonic waves
with wavevector k < k, have large coherent gain. The hypersonic
region k, < k < k; has losses comparable to the coherent gain. The
thermal region k > k, has net loss. The angular cone about the
direction of electron drift k, is the limit of the gain cone.



The nonlinear interaction tends to bring any given sound mode into
equilibrium with those coupled to it. By contrast, the coherent amplifica-
tion tends to increase the energy of a mode and to take it further out of
equilibrium. For our purposes, we shall define the hypersonic region
(kl <k< k2) as that region in which the nonlinear mixing is just dominant
over the coherent net gain. Such sound waves are then damped to a level at
which they are equilibrated with the other hypersonic modes. However, the
sum of all such modes is undergoing net gain from the drifting electrons.
Such a band of sound waves can no longer be treated by Eq. (3.2) where each
mode k is well defined and identifiable over times of the period of the col-
lective wave. When the mixing is strong enough, the modes exchange energy

rapidly and one can best describe the system as a fluid.

Those modes in the gain cone of Fig. 2 (where Ve cosg > vs) are
amplified. In the hypersonic region, energy is pumped into those modes in
the gain cone, but is rapidly distributed over all the modes which are
coupled via the nonlinear interaction. If the net gain exceeds the loss for
the entire shell, then one can describe these modes as a fluid which is gain-

ing in total energy and net sonic momentum.

V. THE SECOND SOUND WAVE
Collective waves do exist in the fast mixing limit; i.e., the time,
Tt needed for a single particle to lose e—1 of its energy to other particles
is short compared to periods of interest (QTm < 1). The most familiar example
is that of sound waves in particle gases. One does not use directly the
equations of motion of individual molecules, analogous to Eq. (3.2), but
rather one uses hydrodynamic variables such as pressure, drift velocity,

density, etc. The propagation of a compressional wave like a sound wave in
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a particle gas has been examined for a fluid of hypersonic phonons. The
analogy with a sound wave holds very well giving rise to the name ®second

sound® for the phenomenon.

When the density of sonic energy is higher in one region than in
another, the sonic radiation pressure is also higher. Sonic energy will then
tend to flow down the radiation pressure gradient. The velocity of a com-

pressional wave in such a situation would be given by

where p is the radiation pressure and p is the effective mass of the sound
waves. If the particles are sound waves, they all have the same velocity ¢

and

p = pc2 cos 9 :*l';pca

where cos® is the angle a hypersonic wave makes with normal to the surface
over which the pressure is taken. The average of cos 0 is % when the hyper-
sonic waves are uniformly distributed over all angles. This distribution

results from the mixing interactions which tend to return the hypersonic

fluid to a thermal distribution. Therefore

v =

L.
/3
The hydrodynamic, or rather thermodynamic,wave described here is
different from the dynamic waves described in Sec. 3. However, the acousto-
electric effect will still be present. Fluctuations in hypersonic density
will cause variations in the acoustoelectric field. The major observable
difference between the two limits of collective waves is in the velocity of

propagation. For a more thorough and rigorous description of this type

- 15 -




of collective wave the reader is referred to the literature on second sound

in solids.7

VI. THE MEAN FREE PATH FOR MIXING COLLISIONS
Second harmonic generation, a special case of the nonlinear inter-

action, has been investigated by several authors.s'6 The following equation

has been derived by Kroger

W 2
op K b Y+1 we | P
3w c D
= = et " o™ (6.1)
ox 200’ Iy iy —)| |v+i 24—
+ [N] +UD + 2(1-) + UD
3
= Az(w)pw
where p, A is proportional to the amplitude of the second harmonic,
2
Ka -— EE-— — .9'._ W —_ 9—8—
ce, c - € D ~ Dn
(6.2)
wE
Y = 1____0_
c

where ep is the piezoelectric constant, €o the dielectric constant, o is the
conductivity, p the mobility, Dn the electron diffusion constant, and P, is

proportional to the amplitude of the initial wave.

To simplify greatly the following analysis, we will suppress the
frequency dependence of the interaction by assuming w W, AW This
assumption is not unreasonable and can be satisfied in photoconducting CdS

for w ~ 10° cps.
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This equation can then easily be generalized to the nonlinear
interaction of three sound waves as long as all three frequencies are roughly

equal . Equation (6.1) becomes

-3
o L e (6.3)
—p = ——— p. P .
ot wl 2eoc02 u2 Y3

where Wy + W = ;. The waves Wy and Wq are being damped by transferring

energy to w The mean free path for energy transfer between three sound

1°
modes, assuming p's given by thermal amplitude at room temperature for rea-

sonable values in photoconducting CdS, is
me107cm.

The actual mean free path is given approximately by summing the interaction

with a given pair of waves over all the pairs capable of interacting.

The importance of considering the hypersonic region separately
arises because of the possibility of a bootstrap mechanism determining the
lifetime or mean free path of these sound waves. The piezoelectric-electronic
nonlinear interaction is much stronger than the usual crystal anharmonic
interactions. This makes it possible for this interaction to be the dominant
mechanism for determining the lifetime of the hypersonic waves. Because this
mechanism is dominant, we can restrict the modes with which we are concerned
to only those piezoactive modes up to wavevector k2 which are strongly coupled

by the nonlinear currents.

Sound waves with long mean free paths and those being amplified
tend to interact only with collinear modes. As shown by Eq. (6.1), the flow

of energy in such an interaction depends on the relative phase of the
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participating waves. When the waves are not collinear, the relative phase
alternates because the wave fronts do not keep pace. This causes the net
flow of energy to cancel, giving rise to frequency and wavevector conserva-
tion laws. Sound waves with short mean free paths and short lifetimes, how-
ever, can interact with a wider group of waves as complete cancellation
does not occur during the short times of the interaction, as pointed out by
Nava et 81,8 and Ciccarello and Dransfeld.9 The situation then is:

(a) The lifetime of the waves depends strongly on the number of hypersonic
waves which can cause damping via the piezoelectric anharmonic terms, and
(b) The number of modes capable of interaction by the piezoelectric anhar-
monicity depends strongly on the lifetime. The angle that wavevectors can
make with one another and still interact due to finite mean free paths is

illustrated in Fig. 3.

To avoid cancellation of energy transfer, the wavevectors must
add up to a closed triangle; otherwise, a beat vector is introduced. However,
for finite mean free paths, the wavevectors can miss adding to zero provided

the resultant vector & is such that

AL < 1

where L is the mean free path over which the interaction takes place. Assum-

ing that A is specified by having components along vectors b and ¢ in Fig. 4,
2 2 2
(c+a) -(b+y) -a

coS8 =~ ' (6.4)

2 |a| |b + Abl

and assuming approximate conservation of energy

a + b = C R (6.5)
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FIG. 3 One of the arrows represents a piezoelectric sound wave with wave-
length A . The other arrow represents a nonlinear mixing current
generated by two other sound waves and has roughly the same fre-
quency as the initial wave. The distance L 1is the mean free
path for all sound waves in question. It can be seen that the
current and field after both wave and current have traveled a dis-
tance L do not have their phase fronts dephased by more than
A2 , and that the direction of the flow of energy will not neces-
sarily have cancelled out due to dephasing.




8
A S

a

FIG. 4 A possible way for energy to be transferred from a sound wave with

wavevector a to sound waves b and ¢ . The difference of

b -c¢ need not equal a exactly as some uncertainty in the con-
servation of wavevector arises due to finite mean free paths (see
Fig. 3). If A , the uncertainty, is chosen as large as possible
and is oriented properly, an angle © 1is defined such that 6 is
the largest possible departure of b from being colinear with a
Then, every wavevector contained in the cone generated by 6 can
contribute to a three sound wave interaction which can contribute
to the damping of wave a .




—_——— e T T

and that AbzA and a ~ b ~ ¢

c .
1 -4 1 -3
cosd ..~ xS N (6.6)
1+ a 1+ L

where A is the wavelengths involved.

The angle emax defines a cone about a given wave a. Every sonic
mode with wavevector within this cone represents a three wave interaction

possible for sonic wave a. All can contribute to damping of wave ®a®,

An estimate of the mean free path L can be determined self-

consistently using

T = 1 N(emax) = 5 N"H (6.7)

where %% is the loss of energy from a wave during the traversal of the in-
finitesimal distance dx, %% is that lost in a given three wave interaction,
N(emax) is the number of waves in the cone emax' and Q is the solid angle

subtending emax and

a =1 - cos .. - (6.8)

Combining Eqs. (6.6) - (6.8), we find

L= & 1 (6.9)
N (om)? _ 4.
N\

The total number of modes N should be restricted to those modes

which are very strongly coupled. This would be the piezoelectrically active
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modes with wavevectors up to k2 in Fig. 2. Carrier diffusion reduces the
ability to bunch carriers at shorter wavelengths, reducing the nonlinear cur-

rent. Therefore,

k2 an
N =~ —3 ~ 3 (6.10)
21 A

where A is roughly the same wavelength as that with which we have been deal-

ing all salong.

3
L ‘;‘n 4”2 (6.11)
2 - A\
Assuming that the upper frequency corresponding to k, in CdS is v > 109.
2
the term 4\ < 2 and
Lo . (6.12)

A

This mean free path is so short that the approximation made ob-
viously no longer holds. However, the calculation does indicate that mean
free paths can be greatly shortened by the piezoelectric nonlinear interaction
for hypersonic waves with little or no net coherent gain. For lower fre-
quencies, Eq. (6.11) appears to become infinite or negative. This is due to
the use of a continuous formula for Q in Eq. (6.6) which allows for apparent
fractional mode interaction. This is a nonphysical result because at least

a number of collinear harmonic interactions can occur and

L = & . (6.13)
For very short mean free paths, %;u 1, the proper description of the system
is that of a well-mixed gas and the normal modes are the second sound col-

lective modes.
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VII. CONCLUSION
The strong electron-piezoelectric interaction, which makes
acoustic amplification possible in materials such as CdS, also produces non-

linear interactions between sound waves which can cause collective phenomena.

The acoustoelectric effect is an always present form of inter-
action which causes gain to be highest in regions of highest acoustic density.
Any initial flwctuation in acoustic energy will be enhanced by this variable
gain. 1In particular, a sinusoidal distribution of acoustic energy in space
will be amplified as it travels down the crystal in the directioa of the
current, This wave may be composed of many individual sound frequencies and
does not, except under unusual circumstances, have a phase coherence in either
the particle displacement or strains. It does however have a coherent acousto-

electric field which varies with the wavelength of the collective disturbance.

Other effects of the piezoelectric nonlinear interaction can be
grouped under the heading of mixing interactions. These interactions redis-
tribute the energy among different sound wave modes. If the mixing collisions
thermalize the acoustic energy in a time of the order of v, then any descrip-
tion of the acoustic system over times t> T must be in terms of an acoustic
fluid, as acoustic energy cannot be assigned to a specific sound wave over
such times.

When discussing energy transport over times t< T, one can assign
energy to specific modes and the solution of Sec. III is proper. In this case,
the collective waves are convective or dynamic waves. The velocity is close
to that of ordinary sound, only differing by the admixture of waves off the
central axis which must travel at some angle to the collective propagation.

This type of propagation is similar to the usual concept of phonon flux;
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however, the acoustoelectric effects make the flux mutually attractive. The
result of the attraction is to tend to maintain additional coherence in the
flow,

For collective wavelengths and period long compared to free paths
and mixing times, a second sound wave is the solution and this travels at a
velocity slower than the velocity of sound by a factor 1//3. The mixing
relaxation rate depends on the individual sound wave frequency, being fastest
for higher frequencies. Since a wide range of frequencies from ultrasonic
through hypersonic are piezoactive, sound waves capable of both types of

propagation can be present simultaneously.

The solution for the mixing free path was based on a very simpli-
fied model, and the sound waves which can participate in a second sound wave
are not clearly specified. In particular, the coherent gain present in these
systems was ignored. Coherent gain lengthens the mixing free path and this
effect is amplified by the reduction of the number of interacting modes which
contribute to the damping of a given mode. To achieve a significant number
of sound modes capable of propagating second sound requires a delicate bal-
ance of gain, which must be large enough to amplify the wave but small enough
not to disrupt the mixing interaction rate. It appears that this balance
can be attained because second sound waves have most probably been observed
in cas. !0

The role of electrons other than that of providing a source of gain
and nonlinearity for the sound waves has been ignored in this paper. Certain
complications in the propagation of collective waves arise when the electrons
contribute dynamically. Such phenomena as plasma effects and drift velocity
waves dominate the collective behavior. These effects are limited to lower

frequency collective waves: viz, for CdS, ad < 10° sec’'. A discussion and

f peared in other publications.3'11
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